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Artificial Intelligence is Everywhere
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So are, Internet of Things

Precision Agriculture

Intelligent  Traffic
Smart Wind Farms

Disaster Relief

4

Picture Credits. Google Images

Background



Market Trends: AI + IoT
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Machine Learning Process

6Challenges
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Centralized ML Framework
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Challenges of Centralized ML
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Paradigm Shift 

Cloud Edge
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Edge Intelligence

Zhang, Xingzhou, Yifan Wang, Sidi Lu, Liangkai Liu, and Weisong Shi. "Openei: An open framework for edge intelligence." In 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS  2019)
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Hypothesis

Decentralize Machine Learning via 
Efficient and Scalable Algorithms and Architectures 

for Distributed Edge Intelligence
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How to Decentralize ML?
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Requirements for Edge Intelligence

Build Robust Models05 ● Devise fault-tolerance for device failures or stragglers
● Accurate and robust model to data perturbations

Energy Efficiency04 ● Efficient computation and communication process
● Build energy-efficient hardware accelerators for Green AI 

Protect Data Privacy01 ● Keep data decentralized and local on devices
● Design privacy-preserving ML algorithms

Save Bandwidth03 ● Communicate less data during training
● Reduce synchronizations and idling during training

Streaming Data06 ● Incremental federated learning to update the global model
● Discard data after each update for memory and privacy

Reduce Latency02 ● Efficient and scalable training algorithms
● Cheap inference calculations to enable real-time analytics
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Research Focus

Distributed
Network

Hardware
Accelerators

Parallel
ML Algorithms

Distributed
Edge

Intelligence
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Research Contributions

1. Relaxed Synchronization for Parallel QP Problems

2. Householder Sketch for Machine Learning

3. Memory-efficient Framework for Distributed ML

4. Communication-efficient Framework for Scalable ML

5. Multiple FPGA-based System for Energy-efficient ML

6. Rapid Incremental Solver for Federated ML
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Relaxed Synchronization for Parallel QP Problems

16



Parallel QP Problems

17Relaxed Synchronization for Parallel QP Problems
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Synchronization is Necessary and Unavoidable in Step 2
● Results in idling
● Leads to waste of computing time

Relaxed Synchronization for Parallel QP Problems



Relax Synchronization
We propose,

LSDA: Lazily Synchronized Dual Ascent
• Do not synchronize at every iteration
• Communicate data periodically 
• Minimize frequency of communication

19Relaxed Synchronization for Parallel QP Problems



Results (1/2)

20

 LSDA converges to the optimal solution of the 
dual variable significantly faster than the TSDA 

Communication frequency is minimum at 
optimal synchronization period, P=70

Relaxed Synchronization for Parallel QP Problems



Results (2/2)
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Computation time is minimum at P=70 
irrespective of number of parallel workers

Relaxed Synchronization for Parallel QP Problems



Research Contributions

✔ Relaxed Synchronization for Parallel QP Problems
[IEEE IPDPS’16] K. Lee, R. Bhattacharya, J. Dass, V. N. S. P. Sakuru, R. N. Mahapatra, “A Relaxed Synchronization Approach 
for Solving Parallel Quadratic Programming Problems with Guaranteed Convergence,”

❏ Householder Sketch for Machine Learning 

❏ Memory-efficient Framework for Distributed ML

❏ Communication-efficient Framework for Scalable ML

❏ Multiple FPGA-based System for Energy-efficient ML

❏ Rapid Incremental Solver for Federated ML
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Householder Sketch for Machine Learning
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Sketching

A compressed mapping of few or all data points 
(X) in a data set to generate data summary 
called Sketch (S) to preserve or approximate 
the covariance matrix, i.e.,

 STS ≅ XTX

24Householder Sketch for Machine Learning



Householder Sketch
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O(d2)O(nd)
memory 

consumption

Householder Sketch
 (summary)

Householder Sketch for Machine Learning



Householder-Sketch for LMS
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Accurate Sketch

Least-Mean-Squares 

(LMS) (LMS-QR)RTR ≅ XTX

Householder Sketch for Machine Learning



Distributed Householder Sketches
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Householder Sketch for Machine Learning
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O(nd) O(d2) O(pd2) O(d2)

O(d2)

O(d2)

O(d2)

memory 
consumption

gather

gather

gather

local QR master QR

Householder Sketch
 (summary)

Householder Sketch
 (summary) Householder Sketch

 (global summary)

Householder Sketch for Machine Learning



Distributed Framework for LMS

29

LMS

Householder Sketch for Machine Learning



Results (1/2)
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Sequential Training Time (RIDGE-QR vs others)

10x faster

400x faster

Householder Sketch for Machine Learning



Results (2/2)
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Breakdown of DISTRIBUTED RIDGE-QR (10M x 10 dataset) training time with zoomed insets 
depicting communication time (a): Stage 1: DISTRIBUTED HOUSEHOLDER-QR, 

(b): Stage 2: DISTRIBUTED MULTIPLY-QC and RIDGE, (c): Combined percentage

Householder Sketch for Machine Learning



Research Contributions
✔ Relaxed Synchronization for Parallel QP Problems
[IEEE IPDPS’16] K. Lee, R. Bhattacharya, J. Dass, V. N. S. P. Sakuru, and R. N. Mahapatra, “A Relaxed Synchronization 
Approach for Solving Parallel Quadratic Programming Problems with Guaranteed Convergence,”

✔ Householder Sketch for Machine Learning 
[ICML’21]  J. Dass, and R. N. Mahapatra, “Householder Sketch for Accurate and Accelerated Least-Mean-Squares Solvers,”

❏ Memory-efficient Framework for Distributed ML

❏ Communication-efficient Framework for Scalable ML

❏ Multiple FPGA-based System for Energy-efficient ML

❏ Rapid Incremental Solver for Federated ML
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Memory-efficient Framework for Distributed ML
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Distributed Machine Learning

34

By using Householder-QR, and

(QRSVM)

(SVM)

Memory-efficient Framework for Distributed ML



Memory-efficient Distributed ML 
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Block-SeparableNon - Separable
Dense O(n2) Sparse O(d2)memory consumption

Memory-efficient Framework for Distributed ML



Parallel Dual Ascent
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Householder-QR based QRSVM renders SVM 
separable into independent sub-problems!

Memory-efficient Framework for Distributed ML



Workflow

37Memory-efficient Framework for Distributed ML



Results

38

Convergence Linear scaling with #samples Quadratic scaling with rank

Memory-efficient Framework for Distributed ML



Research Contributions
✔ Relaxed Synchronization for Parallel QP Problems
[IEEE IPDPS’16] K. Lee, R. Bhattacharya, J. Dass, V. N. S. P. Sakuru, and R. N. Mahapatra, “A Relaxed Synchronization 
Approach for Solving Parallel Quadratic Programming Problems with Guaranteed Convergence”

✔ Householder Sketch for Machine Learning 
[ICML’21]  J. Dass, and R. N. Mahapatra, “Householder Sketch for Accurate and Accelerated Least-Mean-Squares Solvers”

✔ Memory-efficient Framework for Distributed ML
[ICDCS’17] J. Dass, V. N. S. P. Sakuru, V. Sarin and R. N. Mahapatra, “Distributed QR Decomposition Framework for Training 
Support Vector Machines”

❏ Communication-efficient Framework for Scalable ML

❏ Multiple FPGA-based System for Energy-efficient ML

❏ Rapid Incremental Solver for Federated ML
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Communication-efficient Framework for Scalable ML
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Improved Master QR 

41

At master core: Memory improvement and representation of QR factors

Communication-efficient Framework for Scalable ML



Communication-Efficient Workflow

42Communication-efficient Framework for Scalable ML



Communication-efficient 
Framework for Scalable ML

43Communication-efficient Framework for Scalable ML



Results (1/2)
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Near linear scalability on large datasets 
with increasing parallel workers

Communication-efficient Framework for Scalable ML



Results (2/2)
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Overall training time, Ttrain analysis (in seconds) for benchmarks covtype (p = 16), 
webspam (p = 32) and SUSY (p = 64). 

Communication overhead is Negligible.

Communication-efficient Framework for Scalable ML



Research Contributions
✔ Relaxed Synchronization for Parallel QP Problems
[IEEE IPDPS’16] K. Lee, R. Bhattacharya, J. Dass, V. N. S. P. Sakuru, and R. N. Mahapatra, “A Relaxed Synchronization 
Approach for Solving Parallel Quadratic Programming Problems with Guaranteed Convergence”

✔ Householder Sketch for Machine Learning 
[ICML’21]  J. Dass, and R. N. Mahapatra, “Householder Sketch for Accurate and Accelerated Least-Mean-Squares Solvers”

✔ Memory-efficient Framework for Distributed ML
[IEEE ICDCS’17] J. Dass, V. N. S. P. Sakuru, V. Sarin and R. N. Mahapatra, “Distributed QR Decomposition Framework for 
Training Support Vector Machines”

✔ Communication-efficient Framework for Scalable ML
[IEEE TPDS’18] J. Dass, V. Sarin and R. N. Mahapatra “Fast and Communication-Efficient Algorithm for Distributed Support 
Vector Machine Training”

❏ Multiple FPGA-based System for Energy-efficient ML

❏ Rapid Incremental Solver for Federated ML
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Multiple FPGA-based System for Energy-efficient ML
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Multiple FPGA-based System

48Multiple FPGA-based System Implementation for Energy-efficient ML



Computational Workflow
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✯

✯

✯

✯

✯

✯

Multiple FPGA-based System Implementation for Energy-efficient ML



Inner Product and SAXPY
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SIMD hardware kernels for (a) inner product, < x , y > (b) saxpy, x = x + αy. 
The vectorized kernels process W = 4 elements in each pass with 

pipeline stages, D=2 (inner product)

Doubling Throughput for Inner Product

Multiple FPGA-based System Implementation for Energy-efficient ML



Data Layout + Memory Interface

51

FPGA Block Diagram with memory interfacing. 
Maximum bus width supported by this interface is 
N = 1024 bits. Support for double-precision (B=64 

bits) floating point numbers without any loss of 
accuracy when compared to software 

implementation, the maximum parallel compute 
units, W = ⌊N/B ⌋ = 16 

Data layout in column-major order and memory 
interface for on-chip Block RAM (Full-duplex) 

and off-chip DDR (Half-duplex) with the IP. 
4MB to synthesize 2x2MB BRAMs on each 

FPGA. Can store 256K data samples

Multiple FPGA-based System Implementation for Energy-efficient ML



Results (1/3)
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Datasets

Utilization for FPGA Xilinx Virtex xcvu9p-flgb2104-2-i 

Multiple FPGA-based System Implementation for Energy-efficient ML



Results (2/3)
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Energy consumption Analysis of Multi-FPGA system under strong scaling scenario 
Benchmarks: (a) Skin and  (b) Covtype

Nearly CONSTANT (ideal) energy consumption across #FPGA units
Fully-Parallel Implementation

(a) (b)

Multiple FPGA-based System Implementation for Energy-efficient ML



Results (3/3)
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Broadwell at 145W
ARM at 14W
FPGA at 39W

Multi-FPGA implementation is upto
1.7x faster and 6x lower energy than the cloud processor (Broadwell)
3x-24x faster and 2x-8x lower energy than edge processor (ARM)

Multiple FPGA-based System Implementation for Energy-efficient ML



Research Contributions
✔ Relaxed Synchronization for Parallel QP Problems
[IEEE IPDPS’16] K. Lee, R. Bhattacharya, J. Dass, V. N. S. P. Sakuru, and R. N. Mahapatra, “A Relaxed Synchronization 
Approach for Solving Parallel Quadratic Programming Problems with Guaranteed Convergence”

✔ Householder Sketch for Machine Learning 
[ICML’21]  J. Dass, and R. N. Mahapatra, “Householder Sketch for Accurate and Accelerated Least-Mean-Squares Solvers”

✔ Memory-efficient Framework for Distributed ML
[IEEE ICDCS’17] J. Dass, V. N. S. P. Sakuru, V. Sarin and R. N. Mahapatra, “Distributed QR Decomposition Framework for 
Training Support Vector Machines”

✔ Communication-efficient Framework for Scalable ML
[IEEE TPDS’18] J. Dass, V. Sarin and R. N. Mahapatra “Fast and Communication-Efficient Algorithm for Distributed Support 
Vector Machine Training”

✔ Multiple FPGA-based System for Energy-efficient ML
[ACM FPGA’19 | IEEE TC’20] J.Dass, Y. Narawane, R. N. Mahapatra, and V. Sarin, “Distributed Training of Support Vector 
Machine on a Multiple-FPGA System”

❏ Rapid Incremental Solver for Federated ML
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Rapid Incremental Solver for Federated ML
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Incremental Federated ML Requirements
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1. Data should never be saved on a centralized server nor shared among peers

2. Data samples must not be stored between successive model updates, i.e., 
update using current data only

3. No retraining from scratch is allowed

4. Accurately solve for global model in collaboration with other workers

5.  Robustness and Fault-tolerant to straggling/offline workers

Rapid Incremental Solver for Federated ML



RIVER Setups
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Various setups, round k ∈ [3] (a) Stream: only one worker, where data is generated in 
every round (b) Tributary: fixed number of workers, where data is generated by each 

worker in every round (c) Basin: dynamic number of workers, where in each round 
different groups of workers participate in the network with their data

Rapid Incremental Solver for Federated ML



RIVER-Stream
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RIVER-Tributary

60Rapid Incremental Solver for Federated ML



RIVER-Basin

61Rapid Incremental Solver for Federated ML



Results (1/5)
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RIVER-BASIN execution time per streaming round 
(addition of new data samples or workers) 

is CONSTANT , i.e., computations depends ONLY on the current data and FASTER

400x faster

50x faster

Rapid Incremental Solver for Federated ML



Results (2/5)
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BASIN Scalability across varying streaming batch size, n 
(a) 500x10 (b) 1000x10 (c) 2500x10

Rapid Incremental Solver for Federated ML



Results (3/5)
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BASIN Scalability across varying feature dimension, d 
(a) 500x5 (b) 500x10 (c) 500x50 (d) 500x100

Rapid Incremental Solver for Federated ML



Results (4/5)
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RIVER- BASIN: Timing breakdown analysis 

Rapid Incremental Solver for Federated ML



Results (5/5)
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 BASIN model error relative to Xy-Cumulative

Model is accurately learnt in each round



Research Contributions
✔ Relaxed Synchronization for Parallel QP Problems
[IEEE IPDPS’16] K. Lee, R. Bhattacharya, J. Dass, V. N. S. P. Sakuru, and R. N. Mahapatra, “A Relaxed Synchronization Approach 
for Solving Parallel Quadratic Programming Problems with Guaranteed Convergence”

✔ Householder Sketch for Machine Learning 
[ICML’21]  J. Dass, and R. N. Mahapatra, “Householder Sketch for Accurate and Accelerated Least-Mean-Squares Solvers”

✔ Memory-efficient Framework for Distributed ML
[IEEE ICDCS’17] J. Dass, V. N. S. P. Sakuru, V. Sarin and R. N. Mahapatra, “Distributed QR Decomposition Framework for Training 
Support Vector Machines”

✔ Communication-efficient Framework for Scalable ML
[IEEE TPDS’18] J. Dass, V. Sarin and R. N. Mahapatra “Fast and Communication-Efficient Algorithm for Distributed Support Vector 
Machine Training”

✔ Multiple FPGA-based System for Energy-efficient ML
[ACM FPGA’19 | IEEE TC’20] J.Dass, Y. Narawane, R. N. Mahapatra, and V. Sarin, “Distributed Training of Support Vector Machine 
on a Multiple-FPGA System”

✔ Rapid Incremental Solver for Federated ML
[Under Review, ACM SC’21] J.Dass, N. Purwosumarto, R. N. Mahapatra, and X. Hu, “Rapid Incremental Solver for 
Federated Regression”
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Conclusions

68

We proposed,
● LSDA for Relax Synchronization (IPDPS)
● LMS-QR for Householder Sketch (ICML)
● QRSVM for  Memory-efficient Distributed Machine Learning (ICDCS)
● QRSVM.v2 for Communication-efficient Scalable Machine Learning (TPDS)
● Multi-FPGA system for Energy-efficient Machine Learning (TC)
● RIVER for Incremental learning under Federated ML setups (SC, under Review)

Distributed Edge Intelligence Requirements



Future Directions
• Secure Multi-Party Decentralized Machine Learning

– Cryptographic methods
– Differential Privacy
– Safeguards against malicious workers
– Privacy-preserving sketch computations

• Codesigned AutoML Systems for Distributed Edge Intelligence
– automatically generate ML model-Accelerator codesigned pair
– Hardware-aware Neural Architecture Search (HW-NAS)
– Incorporate design parameters/constraints from distributed computing 

framework to generate optimal pairs

• Systems for Lifelong Multi-Agent Learning
– Learning from little data, retain the acquired knowledge, share 

knowledge with other agents and apply to learning in new settings
– Continuously update model: drone swarms, connected vehicles+users
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Requirements for Edge Intelligence

Build Robust Models05 ● Devise fault-tolerance for device failures or stragglers
● Accurate and robust model to data perturbations

Energy Efficiency04 ● Efficient computation and communication process
● Build energy-efficient hardware accelerators for Green AI 

Keep Data Local01 ● Keep data decentralized and local on devices
● Design privacy-preserving ML algorithms

Communicate Less03 ● Communicate less data during training
● Reduce synchronizations and idling during training

Streaming Data06 ● Incremental federated learning to update the global model
● Discard data after each update for memory and privacy

Reduce Latency02 ● Efficient and scalable training algorithms
● Cheap inference calculations to enable real-time analytics
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Use Case

http://houstontx.gov/smartcity/
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Gaps in Parallel ML Training
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Opportunities
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Householder-QR

78

X = QR , where,  QTQ=QQT=I

memory 
consumption



Distributed Householder Sketches
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Workflow



Properties
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Memory-efficient Distributed ML 
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Results (2/2)
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In prior work,
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Results (3/3)
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Motivation

86



Results (1/3)
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Results (2/3)
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Results (4/5)
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BASIN: Timing breakdown analysis (a) RIVER (b) QR-Cumulative (c) Xy-Cumulative



O(d2)O(nd)
memory 

consumption


