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Distributed large-scale QP based Optimization Problems

Some applications of Quadratic Programming (QP) are

1 Least Square approximations

2 Regression Analysis

3 Portfolio Optimization

4 Support Vector Machines

5 Optimal Control
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Support Vector Machines (SVM)

We focus on distributed data analytics using SVM

Supervised machine learning model (data+label)

Widely used for data classification for its high efficiency

Popular for multivariate non-linear datasets (kernel SVM)

Have been extended for tasks like regression analysis (SVR),
principal component analysis etc.
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SVM as a QP problem

SVM is a convex optimization problem (QP)

Solves for maximal separating hyperplane as a classifier

Maps training vectors into a high dimensional space via a
nonlinear function (kernel SVM)

Hence, solving for dual (rather than primal) form is preferred
using ”kernel trick”

Specifically, we focus on the

two-class soft margin SVM with l2-regularization and l2-loss
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SVM formulation

training dataset, D = {(xi , yi ), i = 1, ...., n}
input data matrix, X = {xi ∈ Rd , i = 1...n} , d-dimensional space
class label vector, y = {yi ∈ {−1, 1}, i = 1...n}

dual SVM

min
α

1

2
αT
(
diag(y)×K× diag(y)T

)
α+

1

2
αT
( 1

2C
In
)
α+ eTα (1)

subject to − Inα ≤ 0n

where, α is a vector of dual variables
e = −1n

C > 0 is penalty parameter for misclassification
K = {k(xi , xj),∀i , j = 1...n} is positive definite matrix (mostly)
k() represents the Mercer kernel function - linear/non-linear
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Kernel SVM for non-linear data

Kernel function:
k(xi , xj) = 〈φ(xi ), φ(xj)〉
where, φ() is a mapping generally
not known or inefficient to
compute.

However,
k(xi , xj) is known and easier to compute (”Kernel trick”).

Linear kernel : k(xi , xj) = 〈xi , xj〉
Radial Basis Function (RBF) kernel:
k(xi , xj) = exp(−γ‖xi − xj‖2) , where, γ is hyperparameter

Measures ”similarity” between two data points in the Feature space
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Challenges

For large sample size n, Kernel methods become unfeasible because

1 K requires O(n2) memory and

2 it incurs computational cost of O(n3) to solve such problems

Go for Low Rank Kernel Approximation !

Low p−rank approximation of K

K ≈ AAT , where, A ∈ Rn×p and p � n.

We use MEKA [Si, 2014] for memory efficient and lower approximation
error compared to Nyström methods etc.
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Recall,

dual SVM

min
α

1

2
αT
(
diag(y)×K× diag(y)T

)
α +

1

2
αT
( 1

2C
In
)
α + eTα

subject to − Inα ≤ 0n

Substitute, K ≈ AAT and define, Â = diag(y)× A

approximated dual SVM

min
α

1

2
αT
(
ÂÂT

)
α +

1

2
αT
( 1

2C
In
)
α + eTα (2)

subject to − Inα ≤ 0n
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Goal

To devise a fast and memory-efficient distributed framework to
train large-scale SVM

Our Contribution

1 QRSVM: QR decomposition framework for memory-efficient
modeling and training of SVM

2 Optimal step size calculation for fast convergence of Dual Ascent
method which iteratively solves the SVM problem

3 Distributed QRSVM: designing distributed QR decomposition and
parallel Dual Ascent techniques for distributed SVM training

4 Compared training time of distributed QRSVM with competing
distributed methods; PSVM and P-packSVM
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QRSVM
Memory-efficient modeling and training of SVM
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Â ∈ Rn×p with p � n has a tall and skinny (TS) structure

QR decomposition

Â = QR,
where, Q ∈ Rn×n is Orthogonal matrix
R ∈ Rn×p is Upper Triangular matrix

Figure: Â

Q, O(n2) → p-
Householder reflector
vectors, O(np)

Figure: R
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Formulation

Recall,

approximated dual SVM

min
α

1

2
αT
(
ÂÂT

)
α +

1

2
αT
( 1

2C
In
)
α + eTα

subject to − Inα ≤ 0n

Now, Substitute Â = QR
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Formulation

Substituting Â = QR

min
α

1

2
αT
(
QRRTQT

)
α +

1

2
αT
( 1

2C
In
)
α + eTα

subject to − Inα ≤ 0n

Define, α̂ = QTα, ê = QT e and using QTQ = In
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Formulation

QRSVM

min
α̂

1

2
α̂T
(
RRT +

1

2C
In
)
α̂ + (ê)T α̂ (3)

subject to − Qα̂ ≤ 0n
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Memory-efficient modeling

Structure of Hessian matrix(
ÂÂT +

1

2C
In
)
⇒
(
RRT +

1

2C
In
)

Dense O(n2)
Non-separable

Sparse O(p2)
block diagonal separable
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Dual Ascent to solve linearly constrained Optimization
problem

Lagrangian L of QRSVM

L(α̂, β) =
1

2
α̂T
(
RRT +

1

2C
In
)
α̂ + (ê)T α̂ + βT (−Qα̂) (4)

where, β ≥ 0n is the Lagrangian dual variable.

Dual Ascent

Dual function: g(β) = minα̂ L(α̂, β)
Dual Problem: maxβ g(β)
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Dual Ascent steps

Gradient method - involves iterating through the following steps
until convergence (error in β falls below stopping threshold)

Step 1: Minimization of Lagrangian

α̂k+1 = arg min
α̂
L(α̂, βk)

= −
(
RRT +

1

2C
× In

)−1
(−QTβk + ê)

(5)

Step 2: Dual variable update

βk+1 = βk + η(−Qα̂k+1) (6)

η > 0 is the step size, β0 = 0n.
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QRSVM Workflow

Two stages of QRSVM

1 QR decomposition: Computational cost O(np2)

2 Dual Ascent method: Computational cost O(np)/iteration
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Optimal Step Size
Fast convergence of Dual Ascent
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Based on optimal synchronization period defined for Lazily
Synchronous Dual Ascent method , Theorem 1 [Lee, 2016]

Scaling factor for optimal step size

To ensure the minimum number of iterations involving the dual
variable update step, the scaling factor P? for optimal step size is
obtained by

P? = max argmin
P∈N

max{|1− λmin(M)P|, |1− λmax(M)P|} (7)

M := η
(
RRT + 1

2C In
)−1

,

η > 0 is step size
λmin(·) and λmax(·) eigenvalues of matrix M
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Optimal step size

For any η > 0 , the optimal step size η? can be computed using

η? = P?η, P? ∈ N (8)

where,

P? =

{
1 if 0 < λ̄−1 < 2⌊
λ̄−1

⌋
if λ̄−1 ≥ 2

and λ̄ = (λmax(M) + λmin(M))/2

λ̄−1 ≈ 1/(ηC )
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Distributed QRSVM
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Stage 1: Distributed QR decomposition

Partition data, Âi ∈ R
n
S
×p on S worker nodes

p � n
S =⇒ S � n

p

Theorem

Given, S horizontal partitions of Â = {Âi}, i = 1..S,

1 Âi = QiRi at each worker node i

2 Gather all Ri ’s at the Master node

3 [R1; ..;RS ] = QgRg at Master node

One can represent the factors Q and R of the complete Â in
distributed formulation as

Q = diag(Q1,Q2, ..Qi ..,QS)× Qg

R = Rg

Qi and Qg - orthogonal matrices
Ri and Rg - upper triangular matrices.
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Stage 1: Distributed QR decomposition

Figure: Implementation

Qi stored as sets of their Householder reflectors, denoted as {qi}
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Stage 2: Parallel Dual Ascent

Define, F = −
(
RgRg

T + 1
2C In

)
Step 1: Minimization of Lagrangian

Recall,

α̂k+1 = arg min
α̂
L(α̂, βk)

= F−1(−QTβk + ê)

Define, β̂k = QTβk
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Stage 2: Parallel Dual Ascent

Define, F = −
(
RgRg

T + 1
2C In

)
Partition F into S block-diagonals, Fi ∈ R

n
S
× n

S

Figure: Block Separable into Fi
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Stage 2: Parallel Dual Ascent

Define, F = −
(
RgRg

T + 1
2C In

)
Step 1: Minimization of Lagrangian - In Parallel

At compute node, i

α̂i
k+1 = F−1i (−β̂i

k
+ êi ) (9)

where,

Fi
−1 =

{
F1
−1 if i = 1

−2C if i = 2..S
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Stage 2: Parallel Dual Ascent

Step 2: Dual variable update

Recall,
βk+1 = βk + η(−Qα̂k+1)

Using, β̂k = QTβk
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Stage 2: Parallel Dual Ascent

Step 2: Dual variable update - In Parallel

At compute node, i

β̂i
k+1

= β̂i
k

+ η?(−α̂i
k+1) (10)

η? is the Optimal step size
β̂k = QTβk
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Stage 2: Parallel Dual Ascent- Implementation

Local update
calculations

β̂i gather to β̂

β̂ ⇒ β

β scatter to βi

Ensure βi ≥ 0

βi gather to β

β ⇒ β̂

β̂i scatter to β̂
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Experimental Results
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Experimental Setup

Hardware

Ada Supercomputing Cluster at TAMU

Intel Xeon E5-2670 v2 (Ivy Bridge-EP), 10-core, 2.5GHz

64 GB/node and 16 cores/node

Message-Passing Interface (MPI), InfiniBand interconnect

Dataset n d Description

a9a 32560 123 predict annual income
covtype 464810 54 predict forest cover type
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Convergence

Figure: a9a: k=166 , covtype: k=512, threshold=10−3
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Scalability of QRSVM: O(np2)

Figure: Scales linearly with n
Figure: Scales quadratically with
rank p
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Optimal Step Size, η∗

Figure: a9a, η∗ = 1.9 Figure: covType, η∗ = 1.9
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Distributed QRSVM: Timing Discussions

Stage 1: Distributed QR

1 Computation:
t(plocalQR) + t(pmasterQR)

2 Communication: t(cgatherR)

Stage2: Parallel Dual Ascent

1 Computation: t(ppda)

2 Communication: t(cpda)
Gather+Scatter

Time details a9a (in ms) covtype (in s)
t(pmeka) 460 2.1

t(plocalQR) 24 1.89

t(pmasterQR) 4 0.02

t(cgatherR) 0.5 0.04

t(ppda) 1628.1 120.18

t(cpda) 17.1 0.36

t(train) 1674.2 122.50
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Distributed QRSVM: Parameter Discussions

Parameters a9a covtype

rank, p 40 64

C 2−1 2−1

γ 2−3 23

approx. Kerror 0.51 0.58

#processors, S 16 16

stopping threshold 10−3 10−3

optimal step size, η∗ 1.9 1.9

#iterations, k 166 512
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Comparison with PSVM and P-packSVM (S = 16)

Dataset dis-QRSVM PSVM P-packSVM

covType 2 min 20 min 16 min

Demerits of PSVM and P-packSVM

PSVM uses Incomplete Cholesky Factorization (ICF) ⇒
Difficult to parallelize and slow ⇒ Unfit for distributed big
data analytics

PSVM training time is O(n2)/iteration ⇒ Limited scalability

P-packSVM solves primal form ⇒ Slow Convergence
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Conclusions
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Summary

1 Memory-efficient modeling and training for QRSVM

2 Parallel SVM formulation - distributed QR decomposition and
Parallel Dual Ascent

3 Optimal Step size calculation for fast convergence and training

4 Performs significantly better than competing algorithms

Future Possibilities

1 Can be implemented in clustered embedded
systems/Edge-line devices to solve large- scale problems
rather than using supercomputers

2 QRSVM can be extended for real-time data analytics

3 QR decomposition technique can be used for other Kernel
based problems like Support Vector Regression etc.

4 Motivates for designing hardware accelerators to further
boost the performance in many domain specific scenarios.
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Thank You!
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