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Introduction
Main challenge in maximizing processor utilization for distributed
computing is to reduce idling due to synchronization across processors.
Synchronization is necessary after every iteration , however, it prevents
many numerical algorithms from scaling with number of processors.
We relax this requirement by synchronizing at a lower rate, process referred
to as Lazy Synchronization. We present a novel approach to solve parallel
Quadratic Programming problems using the proposed Lazily Synchronized
Dual Ascent (LSDA) algorithm. We also provide optimal rate for
synchronization which ensures faster convergence to the solution compared
to Tightly Synchronized Dual Ascent (TSDA) algorithm.
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LSDA Method:
Step 1: For each cluster node i=1…N,
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Step 2: At master node,
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where, L(	
  ) is Langrangian, 𝜂 is step size, 𝑦 is dual variable, 𝑘 is iteration
such that, 	
  𝑡𝑃 ≤ 𝑘 < 𝑡 + 1 𝑃 , t ∈	
  	
  	
  and 𝑃 ≥ 1 is synchronization period.

Optimal Synchronization Period (𝑃∗):

𝑃∗ = max	
  argmin
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where, 𝑀 = 𝜂 ∑ 𝐴'𝑄'H-𝐴';+
',- , 	
  𝜆Z[\ 𝑀 and 𝜆Z`a 𝑀 denote the minimum and

the maximum eigenvalues of the square matrix M, respectively.

Results

LSDA Framework

For a given synthetic dataset, minimum number of iterations k required for
LSDA to converge occurs at P* =70, which is independent of the cluster size
N. It also validates the analytical formulation for optimal synchronization
period.

1. Optimal Synchronization Period, P*

2. Convergence of LSDA vs TSDA
It is observed that LSDA (P* =70)
converges to the optimal solution in
k=211 iterations, much faster
compared to k=868 iterations for
TSDA. In LSDA, synchronization
among nodes occurs only thrice (k/P*)
whereas in TSDA it occurs every
iteration. Hence, the communication
delay is reduced by 99.65% in LSDA.

3. Overall Execution time and Speedup
Computation time and communication time (synchronization) , together is
defined as the overall execution time. In Figures below, (a) LSDA technique
provides significant benefits in both the computation and communication time
compared to (b) TSDA method. This is because computationally intensive local
x-update calculation and communication demanding synchronization occurs
only at optimal synchronization period P*=70 for LSDA. TSDA performs
slower since its synchronization period P*=1. (c) Speedup of LSDA vs TSDA.
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𝑅
• Dense ( 𝑛:)
• Non separable
• Low rank ( non invertible)

• Sparse ( d: + 1)
• Separable into 2 sub-blocks 
• Submatrices are invertible

Tall and Skinny
d ≪ n

Upper Triangular

𝑋g 𝑋g𝑋g; 𝑅𝑅;

QRSVM: QR decomposition framework to solve large-scale linear Support
Vector Classification problems having huge number of instances with
relatively smaller dimensionality, i.e. 𝑑 ≪ 𝑛.

QRSVM framework comprises of two main stages, namely, 1) QR
decomposition of the original input matrix Xˆ into Householder reflectors
and a matrix R, and 2) Dual Ascent method to solve the QRSVM problem for
obtaining the normal w to the hyperplane and identifying set of support
vectors.
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