A Relaxed Synchronization Approach for Solving Parallel Quadratic Programming Problems with Guaranteed Convergence
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Introduction

Main challenge 1n maximizing processor utilization for distributed
computing 1s to reduce 1dling due to synchronization across processors.
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For a given synthetic dataset, minimum number of iterations k& required for
LSDA Method: LSDA to converge occurs at P* =70, which is independent of the cluster size
Step 1: For each cluster node i=1...N, N. It also validates the analytical formulation for optimal synchronization X od RRY R
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iteration. Hence, the communication

such that, tP <k < (t+ 1)P,t€ and P > 1 is synchronization period. , , oo .teéfiions(f{m decomposition of the original mput matrix X" into Householder reflectors
( ) 4 P delay 1s reduced by 99.65% in LSDA. and a matrix R, and 2) Dual Ascent method to solve the QRSVM problem for
) ] obtaining the normal w to the hyperplane and 1dentifying set of support
Computation time and communication time (synchronization) , together is
P* = max argmin max{|1 — A,,,; (M)P|, |1 — A (M)P|} defined as the overall execution time. In Figures below, (a) LSDA technique
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