A Relaxed Synchronization Approach for Solving Parallel Quadratic Programming Problems with Guaranteed Convergence

Kooktae Lee*, Raktim Bhattacharya*, Jyotikrishna Dass**, V N S Prithvi Sakuru**, Rabi N. Mahapatra**

*Aerospace Engineering

**Computer Science and Engineering

Texas A&M University

May 24, 2016

Table of Contents

1 Introduction

- 2 Problem Description for Parallel Quadratic Programming Problem
- 3 A Relaxed Synchronization approach
- 4 Experimental Results
- 5 Summary

1. Introduction

Large-scale Distributed Optimization Problems with focus on Parallel Quadratic Programming (PQP)

Applications of PQP:

- 1) least square problems with linear constraints
- 2) regression analysis and statistics
- 3) SVMs (Support Vector Machines)
- 4) lasso (least absolute shrinkage and selection operator)
- 5) portfolio optimization problems

Problems when implementing parallel computing algorithm

Several critical issues commonly encountered by parallel computing:

- Load imbalance
- Shared memory movement
- Communication overhead
- Synchronization bottleneck

According to the literature 1, the idle process time may be up to 50% of total computation time.

Lab. for Uncertainty Quantification

Aerospace Engineering, Texas A&M University

July 1 2015,

5

¹Buchholz, Peter, Markus Fischer, and Peter Kemper. "Distributed steady state analysis using Kronecker algebra." Numerical Solutions of Markov Chains (NSMC'99): 76-95.

Some facts on synchronization:

- Synchronization requires idle process time for multi-core computing devices
- For extreme-scale parallel computing, this leads to waste of computing time
- Need to relax the synchronization penalty!

How to avoid synchronization latency?

- 1) Asynchronous Computing algorithm:
 - $\bullet\,$ Proceed with computation without waiting values computed by other processors \Rightarrow No need to synchronize data
 - Asynchrony causes randomness in computing values
 - Cannot guarantee the numerical stability and convergence of solution obtained by async. algorithm
- 2) Relaxed Synchronization approach:
 - Do not synchronize the data and hold synchronization
 - Communication takes places periodically.
 - Objective is to minimize the number of communication (synchronization)
 ⇒ How frequently communicate?

2. Problem Description for Parallel Quadratic Programming (PQP) Problem

The quadratic programming problem considered here is

Quadratic Programming Problem

$$\min_{x} f(x) \text{ subject to } Ax = b, \tag{1}$$

where $x \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$,

$$f(x) := \frac{1}{2}x^T Q x + c^T x,$$

 $Q \in \mathbb{R}^{n imes n}$ is a symmetric, positive definite matrix, and $c \in \mathbb{R}^n$.

The cost function f(x) is separable, i.e.,

Assumption

$$f(x) = \sum_{i=1}^{N} f_i(x_i) = \sum_{i=1}^{N} \frac{1}{2} x_i^T Q_i x_i + c_i^T x_i$$
$$Ax = \sum_{i=1}^{N} A_i x_i,$$

where N denotes the total number of subproblems.

Dual Ascent Algorithm

Lagrangian:

$$L(x,y) := f(x) + y^{T}(Ax - b),$$

where y is the dual variable or the Lagrange multiplier.

$$x_i^{k+1} = \arg\min_{x_i} L_i(x_i, y^k) = -Q_i^{-1}(A_i^T y^k + c), \quad i = 1, \dots, N,$$
(2)

$$y^{k+1} = y^k + \alpha^k (Ax^{k+1} - b),$$
 (3)

where $\alpha^k > 0$ is the step size, the superscript k is the iteration counter, and x_i are partitions of x.

Figure: The schematic of Dual Ascent algorithm

In the gathering stage, the synchronization is necessary and unavoidable!

3. Relaxed Synchronization Approach: Lazy Synchronization

		Relaxed Synchronization	Experimental Results	
TSDA (Tightly	y Synchronized Dua	l Ascent) Algorithm		
	$y^{k+1} = y^k$	$+ \alpha^k (Ax^{k+1} - b)$		
	$= y^{k}$	$+\sum_{i=1}^{N}\alpha_{i}\left(A_{i}x_{i}^{k+1}-\frac{b}{\Lambda}\right)$	<u>,</u>).	(4)

LSDA (Lazily Synchronized Dual Ascent) Algorithm

$$y^{k+1} = y^k + \sum_{i=1}^{N} \alpha_i \left(A_i x_i^{tP+1} - \frac{b}{N} \right), \quad tP \le k < (t+1)P,$$
 (5)

where $t \in \mathbb{N}_0$.

Known:
$$x_i^{tP+1} = -Q_i^{-1}(A_i^T y^{tP} + c)$$

LSDA Algorithm Development

$$y^{k+1} = y^{k} + \sum_{i=1}^{N} \alpha_{i} \left(-A_{i} Q_{i}^{-1} \left(A_{i} y^{tP} + c \right) - \frac{b}{N} \right), \quad tP \le k < (t+1)P.$$
 (6)

when k = (t+1)P - 1, we have

$$y^{(t+1)P} = \left(I - P\sum_{i=1}^{N} \alpha_i \left(A_i Q_i^{-1} A_i^{T}\right)\right) y^{tP} - P\sum_{i=1}^{N} \alpha_i \left(A_i Q_i^{-1} c + \frac{b}{N}\right), \quad (7)$$

where *I* stands for the identity matrix with a proper dimension. New dynamics given by:

 $\Rightarrow y^{(t+1)P} = \mathbf{A}(\mathbf{P})y^{tP} + \mathbf{b}(\mathbf{P}), \quad P \in \mathbb{N}$

Three issues related to LSDA algorithm

For LSDA algorithm, the following issues have to be resolved.

- 1) Stability issue: Is LSDA algorithm stable?
- 2) Convergence issue: Does LSDA algorithm provide the same solution as compared to TSDA algorithm?
- Optimality issue: What is the optimal synchronization period P* then?

Lemma

(Stability) The dual variable for LSDA algorithm is stable if and only if

$$o(\mathbf{A}(\mathbf{P})) < 1.$$
 (8)

where $\mathbf{A}(\mathbf{P}) := I - P \sum_{i=1}^{N} \alpha_i \left(A_i Q_i^{-1} A_i^T \right)$ and the symbol $\rho(\cdot)$ denotes the spectral radius of the given matrix (i.e., the largest magnitude of the eigenvalue).

		Relaxed Synchronization	Experimental Results	
Propositio	0			

(Convergence) Consider the QP problem that is separable. If the condition (8) holds, then the dual variables y_{LSDA} for LSDA and y_{TSDA} for TSDA converge to the same fixed-point value $y^* := \lim_{k \to \infty} y_{TSDA}^k = \lim_{t \to \infty} y_{LSDA}^{tP}$

Theorem

(Optimality) For the given parallel QP problem with LSDA technique, the optimal synchronization period P^{*} is obtained by

$$P^{\star} = \max \arg\min_{P \in \mathbb{N}} \max\{|1 - \underline{\lambda}(\beta)P|, |1 - \overline{\lambda}(\beta)P|\}$$
(9)

where $\beta := \sum_{i=1}^{N} \alpha_i A_i Q_i^{-1} A_i^T$, $\underline{\lambda}(\cdot)$ and $\overline{\lambda}(\cdot)$ denote the smallest and the largest eigenvalues of the square matrix, respectively.

4. Experimental Results

Hardware & Software Description

• Hardware:

40 node cluster of Amazon Web Services (AWS) Elastic Cloud Compute (EC2) instances: Intel Xeon processors with clock speed up to 3.33 GHz One processing unit with 1GB memory

Software:

C++ with Armadillo (v5.400.2) – linear algebra library MPI framework library (MPICH-v3.1.4) for the inter-node communication

The data was synthetically generated with random values uniformly distributed over [-1, 1]. The problem specifics are as follows:

Experimental Setup

- 1) Number of instances in synthetic dataset, d = 200,000.
- 2) Step size, $\alpha = 0.27$.
- 3) Optimal Synchronization Period, $P^* = 70$.
- 4) Stopping threshold, $\epsilon = 10^{-5}$.
- 5) Cluster Size, $N = \{10, 20, 32, 40\}$.

Figure: LSDA algorithm: Number of iterations (k) vs Synchronization Period (P). The number of iterations required for the TSDA algorithm to converge is constant.

Figure: LSDA algorithm: Computation Time vs Synchronization Period for cluster size N = $\{10, 20, 32, 40\}$

Figure: Dual variable solution vs Number of iterations. LSDA algorithm converges to the optimal solution of the dual variable significantly faster than the TSDA algorithm.

Figure: Total execution time vs Cluster size for TSDA algorithm (left) and for LSDA algorithm (right)

Computing Performance Analysis

Computing Performance Comparison between TSDA & LSDA algorithm

	TSDA algorithm	LSDA algorithm	
No. of iteration	868	211	
Sync. period	1	70	
No. of Sync.	868 (=868/1) times	3 (=211/70) times	
Comm. delay reduction	99.65%		
Speedup	160 times		

- 1 A relaxed synchronization technique was developed to solve massively parallel large-scale QP problems.
- ² Optimal synchronization period is computed analytically with guaranteed convergence.
- ³ The efficiency of the proposed methods was verified through the real implementation of parallel computing algorithm.

Thank you.

Acknowledgement:

This work was supported by AFOSR grant FA9550-15-1-0071, with Dr. Frederica Darema as the program manager.