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1. Introduction
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Large-scale Distributed Optimization Problems
with focus on Parallel Quadratic Programming (PQP)

Applications of PQP:
1) least square problems with linear constraints
2) regression analysis and statistics
3) SVMs (Support Vector Machines)
4) lasso (least absolute shrinkage and selection operator)
5) portfolio optimization problems
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Problems when implementing parallel computing algorithm

Several critical issues commonly encountered by parallel computing:
Load imbalance
Shared memory movement
Communication overhead
Synchronization bottleneck

According to the literature 1, the idle process time may be up to 50% of total
computation time.

1Buchholz, Peter, Markus Fischer, and Peter Kemper. ”Distributed steady state analysis
using Kronecker algebra.” Numerical Solutions of Markov Chains (NSMC’99): 76-95.
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Some facts on synchronization:
Synchronization requires idle process time for multi-core computing devices
For extreme-scale parallel computing, this leads to waste of computing time
Need to relax the synchronization penalty!

How to avoid synchronization latency?
1) Asynchronous Computing algorithm:

Proceed with computation without waiting values computed by other
processors ⇒ No need to synchronize data
Asynchrony causes randomness in computing values
Cannot guarantee the numerical stability and convergence of solution obtained
by async. algorithm

2) Relaxed Synchronization approach:
Do not synchronize the data and hold synchronization
Communication takes places periodically.
Objective is to minimize the number of communication (synchronization)
⇒ How frequently communicate?
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2. Problem Description for Parallel Quadratic
Programming (PQP) Problem
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The quadratic programming problem considered here is

Quadratic Programming Problem

min
x

f (x) subject to Ax = b, (1)

where x ∈ Rn, A ∈ Rm×n, b ∈ Rm,

f (x) := 1
2 xT Qx + cT x ,

Q ∈ Rn×n is a symmetric, positive definite matrix, and c ∈ Rn.
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The cost function f (x) is separable, i.e.,

Assumption

f (x) =
N∑

i=1
fi (xi ) =

N∑
i=1

1
2 xT

i Qi xi + cT
i xi

Ax =
N∑

i=1
Ai xi ,

where N denotes the total number of subproblems.
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Dual Ascent Algorithm
Lagrangian:

L(x , y) := f (x) + yT (Ax − b),

where y is the dual variable or the Lagrange multiplier.

xk+1
i = arg min

xi
Li (xi , yk) = −Q−1

i (AT
i yk + c), i = 1, . . . ,N, (2)

yk+1 = yk + αk(Axk+1 − b), (3)

where αk > 0 is the step size, the superscript k is the iteration counter, and xi are
partitions of x .
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Figure: The schematic of Dual Ascent algorithm

In the gathering stage, the synchronization is necessary and unavoidable!
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3. Relaxed Synchronization Approach:
Lazy Synchronization
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TSDA (Tightly Synchronized Dual Ascent) Algorithm

yk+1 = yk + αk(Axk+1 − b)

= yk +
N∑

i=1
αi

(
Ai xk+1

i − b
N

)
. (4)

LSDA (Lazily Synchronized Dual Ascent) Algorithm

yk+1 = yk +
N∑

i=1
αi

(
Ai x tP+1

i − b
N

)
, tP ≤ k < (t + 1)P, (5)

where t ∈ N0.
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Known: x tP+1
i = −Q−1

i (AT
i y tP +c)

LSDA Algorithm Development

yk+1 = yk +
N∑

i=1
αi

(
−Ai Q−1

i
(
Ai y tP + c

)
− b

N

)
, tP ≤ k < (t + 1)P. (6)

when k = (t + 1)P − 1, we have

y (t+1)P =
(

I − P
N∑

i=1
αi
(
Ai Q−1

i AT
i
))

y tP − P
N∑

i=1
αi

(
Ai Q−1

i c + b
N

)
, (7)

where I stands for the identity matrix with a proper dimension.
New dynamics given by:

⇒ y (t+1)P = A(P)y tP + b(P), P ∈ N
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Three issues related to LSDA algorithm

For LSDA algorithm, the following issues have to be resolved.
1) Stability issue:

Is LSDA algorithm stable?

2) Convergence issue:
Does LSDA algorithm provide the same solution as compared to TSDA
algorithm?

3) Optimality issue:
What is the optimal synchronization period P∗ then?
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Lemma
(Stability) The dual variable for LSDA algorithm is stable if and only if

ρ
(

A(P)
)
< 1. (8)

where A(P) := I − P
∑N

i=1 αi
(
Ai Q−1

i AT
i
)

and the symbol ρ(·) denotes the
spectral radius of the given matrix (i.e., the largest magnitude of the eigenvalue).
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Proposition
(Convergence) Consider the QP problem that is separable. If the condition (8)
holds, then the dual variables yLSDA for LSDA and yTSDA for TSDA converge to
the same fixed-point value y∗ := limk→∞ yk

TSDA = limt→∞ y tP
LSDA.

Theorem
(Optimality) For the given parallel QP problem with LSDA technique, the optimal
synchronization period P? is obtained by

P? = max argmin
P∈N

max{|1− λ(β)P|, |1− λ̄(β)P|} (9)

where β :=
∑N

i=1 αi Ai Q−1
i AT

i , λ(·) and λ̄(·) denote the smallest and the largest
eigenvalues of the square matrix, respectively.
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4. Experimental Results
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Hardware & Software Description
Hardware:
40 node cluster of Amazon Web Services (AWS)
Elastic Cloud Compute (EC2) instances:
Intel Xeon processors with clock speed up to 3.33 GHz
One processing unit with 1GB memory

Software:
C++ with Armadillo (v5.400.2) – linear algebra library
MPI framework library (MPICH-v3.1.4) for the inter-node communication
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The data was synthetically generated with random values uniformly distributed
over [−1, 1]. The problem specifics are as follows:

Experimental Setup
1) Number of instances in synthetic dataset, d = 200, 000.
2) Step size, α = 0.27.
3) Optimal Synchronization Period, P∗ = 70.
4) Stopping threshold, ε = 10−5.
5) Cluster Size, N = {10, 20, 32, 40}.

Lab. for Uncertainty Quantification Aerospace Engineering, Texas A&M University July 1 2015, 20



Introduction Problem Description Relaxed Synchronization Experimental Results Summary

Figure: LSDA algorithm: Number of iterations (k) vs Synchronization Period (P). The
number of iterations required for the TSDA algorithm to converge is constant.
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Figure: LSDA algorithm: Computation Time vs Synchronization Period for cluster size N
= {10, 20, 32, 40}
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Figure: Dual variable solution vs Number of iterations. LSDA algorithm converges to the
optimal solution of the dual variable significantly faster than the TSDA algorithm.
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Figure: Total execution time vs Cluster size for TSDA algorithm (left) and for LSDA
algorithm (right)
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Computing Performance Analysis

Computing Performance Comparison between TSDA & LSDA algorithm

TSDA algorithm LSDA algorithm
No. of iteration 868 211
Sync. period 1 70
No. of Sync. 868 (=868/1) times 3 (=211/70) times
Comm. delay reduction 99.65%
Speedup 160 times
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Summary

1 A relaxed synchronization technique was developed to solve massively parallel
large-scale QP problems.

2 Optimal synchronization period is computed analytically with guaranteed
convergence.

3 The efficiency of the proposed methods was verified through the real
implementation of parallel computing algorithm.
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Thank you.
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