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Linear Models
JyotiKrishnaDass

f
TEXAS A MUniversity

x y
y f a

linear in x data
Line or Hyperplane
Polynomialof degree 1

y b t Mone
r l

response predictor
variable variable
output input

y sez a
x
x

E o x

o

feature he feature X

LinearRegression Linear classificationwith 3D data on 3D data
Fit a line on response Find a line that
variable separates the data

yet seybm pofraameutne.es YmwifoyIw lR I i y sign Int1 2 2 1 1 2 2x
1 1 1 1
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Task Learning response

E B
E E

feature
feature feature x feature12

LinearRegression with Linear classification on
3D data multiplefeatures 3D data
Fit a plane Find a separating plane

y I X Xz Wo Xi Xz 23 Wi
w W2

Equationof a plane W3
parameterized by WEY parameters
Wo w andWz of a plane

y I w EIR f t.tl y signify1 3 3 1 1 1

Source: Learning from Data














































































































Linear Regression
Given X i thedata point predictor i xd vector

N number ofdata points i I n

d dimensional feature
Yi real valued response for i th datapoint

Let Yi
X I Y y

1 Xn ynN x dti nxt

we wish to fit the model

Yi Wo 1 Wiki wzx.cz1 1Wd did 1 Ei

where Wo w coz Wa parameters ofthe hyperplane
C Gaussian noise

uncorrelated across measurements

j I N

System of linear Equations n equations
CdtD variables

Y L K Wo
Yz W

I 24
Wi d Cd DXl

Y
n I kn

n x dti














































































































parameterIwejgicientY e X W matrix
n Cd Dld data augmfe.gl

Find best fitting W that approximates the
above relationship between X and Y

111

Solving a systemof linear equations
with n equations

dti unknown variables

CASE 1 n dtl

X is square matrix

assumingdatapoints areis invertible linearly independent

W X
I
Y exactly fits the data

nu n xn nx l poor generalization
need to regularize
or subsample data

CASE 2 N L d11
intoTrainingavalidation

X is nxidt

fewer datapoints than feature dimensions
less equations than unknown variablesunderdetermined
Infinite number of solutions system
collect more data feature selection andregularize














































































































CASE 3 N dtl

X is

N x da

more datapoints than feature dimensions
more equations than unknown variables

overdetermined system
no solution exists
Look for W that is best fit

Best Fit Criterion Least squares
ya residual

Mgr
inprediction

e
ei Yi fCE w

l x t
k aresmpounse

Inedited

se

I Icw Y XWnxt nxt nxcdD CdtDX1

Optimization goal is to minimize ee t it n














































































































Mean Squared Error Least Squares Objective
N 2

MSE w In et In lela
it

Jcw In ete E.ie

afY XWILY XW
Homework

In YTY 2W X'Y WTXTXW

mwin JCW saw

Conyexsurface
minima

Miwn In et parabola w ID

min In Y HWY Y XWw

min In YTY 2W X'Y WTXTXW
W














































































































Analytical solution to Least squares

F W
w mum mat minimizes MSEN

fyyty 2 TWTXTY TWTXTXWJ.am
go iii am f

In O 2 XT't t 2XTXW O
w

XTXW X'Yrs Normal Equation

W I XT 11 when XX
1 existsd113 1 1 well conditioned

1

pseudoinverse of X
one step solution














































































































Gradient Descent
iterative steps to solve
optimization problem

y n
Tt Y Network

t t fixed
response t x t t

t Wo or wi

Tibby se fixed
JID data x

onefeature

Wo
W

for Xi ID data d D Bowlshaped

Recall J W In Fe Yi f Lxi WIT

1184

Jfwo.co In Fy Yi Wo w ni
2

In II y t wit w xi ZuoYi
2 Wow Ni 2W Xi Yi

Quadratic function in Wo
Quadratic function in co
Quadratic surface in Cwo co














































































































In Analytic Solution recall

Paw O w Iww
W 2 1 2 1

Alternatively iteratively set

FwUw On

Io 0
c Wo

DID o
c Wi

2 1 2 1

Direction of Gradient is in the

Directionof fastest increase in functionvalue
steepest ascent Iclimb

x fixed hw

g I ydie.nameusetinbaYFme

Q y

I 2 3 Too
k f

w I gradientvectornormal
to levelcurve

Elliptic Paraboloid Level Curves
bowl shapedsurface equipotentiallevels

eg o w Wo2 w eg ft w I

coz af 4
Gradientvector Tff

Wo Wo't 0,2 D














































































































If we are at any random Wo w Hoowi on

the bowl surface we need to roll down into

the deepest point in the Valley ie minima

where J Wo w is minimum

This rolling down needs to be in the direction
of steepest descent to save time

In level curves we need to move from
outer levels to innermost levels until we

reach the center with minimum value of J

Follow direction of fastest decrease

Follow Negative Gradient direction until
you reach zero gradient

i e FWIW O

Y n i
t

X FJ 0

Wo or wi














































































































Iteratively
WITH WH nFJ WH

where 2 learning rate step size
i e take a steepsize of z in the direction

of negative gradient

1 me

NVVvvvv.mn
Largeoscillations

more iterations slowconvergence

mm

smoothingoscillations fast
less iterations convergence














































































































Recall linear regression cost function for ID data

Jfoo.co L In II yi wo w uit

In Fe y t wit w2x 2WoYi
2 t 2 Wow Ni 2W Xi Yi

IT J way
OJI
Wo

dJC
d W ZXI

J Wo In Woh 2WoYi 2 Wow Ni t constant
2

J wi In IIwine 2 wow ni zu xiyi
tconstant

In 42Wo 2g t 2W see

In C a If p yi

In Fe X W Yi
scalar














































































































dJgGw gin 2 2W see
t 2 Woai 2 ni yi

In Fz no two 1 y c see

L 1 Y

FJ W in
XiW Yi 1

2 1 X W Y Ni

2 1

In ECiw Yi L
a

In ax
scalar

T
PJCW In HW It n

Parameter updatestep for Linear Regression multivariate

WITH Wut y
XT XW Y

Ld17 1 stepsike Ls trainingsamples














































































































GradientDescent Algorithm batch

1 Initialize at step t O to WH
2 for t O I 2 do
3 compute the gradient

takes all
get TJ WH trainingsamples

foreachiteration
4 Update the weights

Watt WH ygut

5 Iterate until it is timeto stop

6 end for
7 Return the final weights wet t

t














































































































Regularized LinearRegression
To avoid overfilling training data
To avoidfitting the noisysamples
To generalize well on unseentestdata
Aim is to beguarded defensive in how
we predict

keep W small by constraints

recall msecwt zhI.e.tw Y HWY Y XW

min MSE W min MSE W
W subject to HWH EC W subject to WTW EC
for some C 0 for some C 0
LASSO Regression RidgeRegression

2min MSE w d HWA min MSE w d Il wHzw w in
w a o T W g o

X O

Relax constraints on W
constrainedregion grows hits ellipsecenter

LASSO

Ridge
Linear Regression
LeastSquares Fit

Model complexity increases refitting














































































































ManfE

coz of ah ag

c c

c c w c c af
c c

can lead to 0parameters shrinks the parameters
Featureselection reducesmodelcomplexity

Solving Ridge Regression

J W In Y XWIT Y Xw t InWTW

In Y Y 2WTXTY WTXTXw

dznwTW.dzTww In O 2X'T t 2 XTXw t 2 W
n

in XTC XW Y IW
n














































































































Least Squares Fit with Regression

0 at w

X.tn tII w inXTYn

x 1 21 W MY

w x'x SI x'Y
an

extrapositive term that
makes XX1 31 invertible

eigenvalues of XTX Z O

eigenvalues of Txt AI 0 as A O

Inverse exists ALWAYS

x
Task Learning response

Source: Learning from Data














































































































Logistic Regression

Goal is to model Probability of y belonging
to an event or not given the data I

x y e fo i
discretevalues

eg Given the patient health data what is
the likelihood of heart attack over the next
year

ICI OfII week 0 WTI
w

me i

III III
7 1

Logistic function sigmoid
Ocs

gas I I
1 I es I eS

l O s
o

Ofs L
y Ites
Is

O est offed III fees II Oak Ood














































































































Dataset 54 Yi Jen Yn

Ie patient i's health information
dti x1 Vector

Yi did they have a heart attack
or not

Let us assume that
P y I f ai w futa
ply olni w 2 fwm

compact notation

ply II w fwm I twin
t

Assume n training examples generated
independently

L W p YIXW is likelihood of parameless

II pfy.tn w
TTfffn7iYifz ffniD

ti

i I














































































































Goal is to Maximize this likelihood

maximize the log likelihood

Kw log Lcw

mahxfgyidogffu.CH iu yi7logf ffgeiI
W
111

min ecw optimize using Gradient Ascent
W where
cross entropy a ti t
loss W W t zT dWHw

positive as we aremaximizing

Let us find update for 2 training sample Ei Yi

affiwa fifty a yi oH
k w w dWk
Recall fufni 0 wine where O is

sigmoid I
logisticfunction F e b

and Ots Ocs l OCS

fifa a si twist tfiiDEh




















































































fyi i fufu G yilfufnifni.ie

yi fufsti Flik

WittD Waltzk k gwit
12 1 dti contribution
k 0

fromsingle
sample Fei lil
Stochastic Gradient

Ascent

WITH WE y fyi a Ewingthe l e l
k 0

v
Task Learning response

Source: Learning from Data



Perception Classifier Model
seza gWTz O

f g WT
xn y c 0,1 of If i'aan

binaryclass Is Iwin o

fWEE 0 WTI
feature of

Linearclassification
on 3Ddata

I w1 µ

Eindardestinmeethaafa
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Wo

N w Gfs YZ WTIi
aOls

Wd OCS soo
Nd

O O S

Rough model of how Step b 1 if s 0

human brain works 0 if Seo

Update Rule
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k 0 1
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Lecture 2: The SVM classifier
C19 Machine Learning         Hilary 2015           A. Zisserman

• Review of linear classifiers 
• Linear separability
• Perceptron

• Support Vector Machine (SVM) classifier 
• Wide margin 
• Cost function
• Slack variables
• Loss functions revisited
• Optimization



Binary Classification

Given training data (xi, yi) for i = 1 . . . N , with

xi � Rd and yi � {c1,1}, learn a classifier f(x)
such that

f(xi)

(
x 0 yi = +1
< 0 yi = c1

i.e. yif(xi) > 0 for a correct classification.



Linear separability

linearly 
separable

not 
linearly 

separable



Linear classifiers

X2

X1

A linear classifier has the form

• in 2D the discriminant is a line

• is the normal to the line, and b the bias

• is known as the weight vector

f(x) = 0

f(x) = w>x+ b

f(x) > 0f(x) < 0



Linear classifiers

A linear classifier has the form

• in 3D the discriminant is a plane, and in nD it is a hyperplane

For a K-NN classifier it was necessary to `carry’ the training data

For a linear classifier, the training data is used to learn w and then discarded

Only w is needed for classifying new data

f(x) = 0

f(x) = w>x+ b



Given linearly separable data xi labelled into two categories yi = {-1,1} , 
find a weight vector w such that the discriminant function

separates the categories for i = 1, .., N
• how can we find this separating hyperplane ?

The Perceptron Classifier

f(xi) = w>xi+ b

The Perceptron Algorithm

Write classifier as 

• Initialize w = 0

• Cycle though the data points { xi, yi }

• if xi is misclassified then

• Until all the data is correctly classified

w� w+ n sign(f(xi))xi

f(xi) = w̃>x̃i+ w0 = w>xi

where w = (w̃, w0),xi = (x̃i,1)



For example in 2D

X2

X1

X2

X1

w

before update after update

w

NB after convergence w =
PN
i nixi

• Initialize w = 0

• Cycle though the data points { xi, yi }

• if xi is misclassified then

• Until all the data is correctly classified

w� w+ n sign(f(xi))xi

xi



• if the data is linearly separable, then the algorithm will converge

• convergence  can be slow …

• separating line close to training data

• we would prefer a larger margin for generalization
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Perceptron 
example

Kt xx x x
x t X xx x x xX x xxx xx xx x

x x xo o o xo Ooo
O

DO O
o f o ofo o
o Oo O

o OOof ooo I
do do o



What is the best w?

• maximum margin solution: most stable under perturbations of the inputs



Support Vector Machine

w

Support Vector
Support Vector

b

||w||

f(x) =
X

i

niyi(xi
>x) + b

support vectors

wTx + b = 0

linearly separable data



SVM – sketch derivation

• Since w>x+ b = 0 and c(w>x+ b) = 0 define the same

plane, we have the freedom to choose the normalization

of w

• Choose normalization such that w>x++b = +1 and w>xc+
b = c1 for the positive and negative support vectors re-

spectively

• Then the margin is given by

w

||w||
.
³
x+ c xc

´
=
w>

³
x+ c xc

´

||w||
=

2

||w||



Support Vector Machine

w

Support Vector
Support Vector

wTx + b = 0

wTx + b = 1

wTx + b = -1

Margin = 2

||w||

linearly separable data



SVM – Optimization

• Learning the SVM can be formulated as an optimization:

max
w

2

||w||
subject to w>xi+b

x 1 if yi = +1
w c1 if yi = c1 for i = 1 . . . N

• Or equivalently

min
w
||w||2 subject to yi

³
w>xi+ b

´
x 1 for i = 1 . . . N

• This is a quadratic optimization problem subject to linear

constraints and there is a unique minimum



Linear separability again: What is the best w?

• the points can be linearly separated but 
there is a very narrow margin

• but possibly the large margin solution is 
better, even though one constraint is violated

In general there is a trade off between the margin and the number of 
mistakes on the training data



Introduce “slack” variables

w

Support Vector
Support Vector

wTx + b = 0

wTx + b = 1

wTx + b = -1

Margin = 2

||w||Misclassified 
point 

{i
||w||

>
2

||w||

[ = 0

{i
||w||

<
1

||w||

{i x 0

• for 0 < { w 1 point is between

margin and correct side of hyper-

plane. This is amargin violation

• for { > 1 point is misclassified



“Soft” margin solution
The optimization problem becomes

min
w�Rd,{i�R+

||w||2+C
NX

i

{i

subject to

yi
³
w>xi+ b

´
x 1c{i for i = 1 . . . N

• Every constraint can be satisfied if {i is supciently large

• C is a regularization parameter:

— small C allows constraints to be easily ignored� large margin

— large C makes constraints hard to ignore � narrow margin

— C =� enforces all constraints: hard margin

• This is still a quadratic optimization problem and there is a

unique minimum. Note, there is only one parameter, C.
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C = Infinity    hard margin



C = 10    soft margin



Optimization
Learning an SVM has been formulated as a constrained optimization prob-

lem over w and {

min
w�Rd,{i�R+

||w||2 + C
NX

i

{i subject to yi
³
w>xi+ b

´
x 1c {i for i = 1 . . . N

The constraint yi
³
w>xi+ b

´
x 1c {i, can be written more concisely as

yif(xi) x 1c {i

which, together with {i x 0, is equivalent to

{i = max (0,1c yif(xi))

Hence the learning problem is equivalent to the unconstrained optimiza-

tion problem over w

min
w�Rd

||w||2 + C
NX

i

max (0,1c yif(xi))

loss functionregularization



Loss function

w

Support Vector

Support Vector

wTx + b = 0

min
w�Rd

||w||2 + C
NX

i

max (0,1c yif(xi))

Points are in three categories:

1. yif(xi) > 1

Point is outside margin.

No contribution to loss

2. yif(xi) = 1

Point is on margin.

No contribution to loss.

As in hard margin case.

3. yif(xi) < 1

Point violates margin constraint.

Contributes to loss

loss function



Loss functions

• SVM uses “hinge” loss

• an approximation to the 0-1 loss

max (0,1c yif(xi))

yif(xi)



min
w�Rd

C
NX

i

max (0,1c yif(xi)) + ||w||2

• Does this cost function have a unique solution?

• Does the solution depend on the starting point of an iterative 
optimization algorithm (such as gradient descent)?

local 
minimum

global 
minimum

If the cost function is convex, then a locally optimal point is globally optimal (provided 
the optimization is over a convex set, which it is in our case)

Optimization continued



Convex functions



Convex function examples

convex Not convex

A non-negative sum of convex functions is convex



SVM

min
w�Rd

C
NX

i

max (0,1c yif(xi)) + ||w||2

+

convex



Gradient (or steepest) descent algorithm for SVM

First, rewrite the optimization problem as an average

min
w
C(w) =

x

2
||w||2 + 1

N

NX

i

max (0,1c yif(xi))

=
1

N

NX

i

µ
x

2
||w||2 +max (0,1c yif(xi))

¶

(with x = 2/(NC) up to an overall scale of the problem) and

f(x) = w>x+ b

Because the hinge loss is not dimerentiable, a sub-gradient is

computed

To minimize a cost function C(w) use the iterative update

wt+1 � wt c ttUwC(wt)

where t is the learning rate.



Sub-gradient for hinge loss

L(xi, yi;w) = max (0,1c yif(xi)) f(xi) = w>xi+ b

yif(xi)

#L
#w

= cyixi

#L
#w

= 0



Sub-gradient descent algorithm for SVM

C(w) = 1

N

NX

i

µ
x

2
||w||2 + L(xi, yi;w)

¶

The iterative update is

wt+1 � wt c tUwtC(wt)

� wt c t
1

N

NX

i

(xwt+UwL(xi, yi;wt))

where t is the learning rate.

Then each iteration t involves cycling through the training data with the

updates:

wt+1 � wt c t(xwt c yixi) if yif(xi) < 1

� wt c txwt otherwise

In the Pegasos algorithm the learning rate is set at tt =
1
xt



Pegasos – Stochastic Gradient Descent Algorithm

Randomly sample from the training data
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Background reading and more …

• Next lecture – see that the SVM can be expressed as a sum over the 
support vectors:

• On web page: 
http://www.robots.ox.ac.uk/~az/lectures/ml

• links to SVM tutorials and video lectures 

• MATLAB SVM demo 

f(x) =
X

i

niyi(xi
>x) + b

support vectors


